$\qquad$ Date $\qquad$
$\qquad$ Part A: Exponents [8.EE.1]

1. For the equation shown, determine the value of $n$ that makes the equation true.
$2^{n} \cdot 2^{7}=2^{12}$
Justify your response with the appropriate property.
2. Alex is rewriting the expression $7^{3} \bullet 7^{5}$ in an equivalent form. Their steps are shown.

Step 1: $7^{3} \bullet 7^{5} \quad$ Explain the error in Alex's work:
Step 2: $7^{3+5} \cdot 7^{1}$
Step 3: $7^{8} \bullet 7^{1}$
Step 4: $7^{9}$
3. A large store receives a shipment of $8^{5}$ packaged toys. Each row of shelves can hold $8^{3}$ packaged toys. Determine how many rows of shelves will be needed to hold all the packaged toys received.
4. Rewrite the expression $\left(3^{5} \bullet 3^{-2}\right)^{2}$ using as few exponents as possible.
5. Provide a counter example to the claim that: $\frac{8^{x}}{4^{x}}=2$

Part B: Scientific Notation [8.EE.4]
6. Compare the quantities $4 \times 10^{3}$ and $4 \times 10^{9}$. Which is larger? By what factor?
7. A new website is experiencing growth in internet traffic. The day the website launched, $8 \times 10^{3}$ people visited the website. On a particularly busy day a few months later, $8 \times 10^{7}$ people visited the page.
Determine how many more people visited the page compared to the day the website launched.

