\qquad Date \qquad Period \qquad
Part A: Angles [8.G.5]

1. In the diagram below, $l \| m$. When trying to solve for y, James found $y=98^{\circ}$. Explain the mistake James made and explain the correct method to solve for y.

2. For each angle measure below, determine if it is the same, supplementary, or neither with $\angle 1$.

	Same as $\angle 1$	Supplementary with $\angle 1$	Neither
$\angle 5$			
$\angle 2$			
$\angle 3$			
$\angle 7$			
$\angle 4$			

Part B: Transformations and Dilations [8.G.3]
3. Triangle ABC is shown.
A) Rotate Triangle $\mathrm{ABC} 90^{\circ}$ clockwise around the origin to create Triangle A'B'C'.
B) Write the coordinates of A', B', and C' after the transformation.

A': \qquad
B': \qquad
C': \qquad
C) Are Triangles ABC and $\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}$ congruent? Justify your reasoning.

4. Describe a transformation or series of transformations that would result in Triangle ABC mapping onto Triangle EFG with $\mathrm{E}(4,-2), \mathrm{F}(4,-6), \mathrm{G}(7,-6)$.

5. Triangle ABC has vertices $\mathrm{A}(4,0), \mathrm{B}(8,0)$, and $\mathrm{C}(8,12)$. Which of the following would not result in Triangle A'B'C' being congruent to Triangle ABC?
A) Reflecting Triangle ABC across the y-axis.
B) Rotating Triangle $\mathrm{ABC} 180^{\circ}$ around the origin counter-clockwise.
C) Translating Triangle ABC 4 units left and 10 units down.
D) Dilating Triangle ABC by a factor of 2 .
6. Figure ABCD has been rotated 180° around the origin, creating the figure with side lengths represented by e, f, g, and h.

Prove that the figures are congruent by matching the corresponding sides and finding their measures.

Side AB has length \qquad and corresponds with side \qquad with length \qquad .

Side BC has length \qquad and corresponds with side \qquad with length \qquad .

Side CD has length \qquad and corresponds with side \qquad with length \qquad .

Side DA has length \qquad and corresponds with side \qquad with length \qquad .

