\qquad Date \qquad Period \qquad
Part A: Rational \& Irrational Numbers

1. For each number, state if the number is rational or irrational. Justify your reasoning.

	Rational or Irrational	Justification
$\overline{7}$		
$\frac{3}{4}$		
7		
$\frac{\sqrt{3}}{3}$		
2π		

2. For each statement, state if it is true or false. Justify your reasoning.

	True or False	Justification
$\sqrt{10}<5$		
$\sqrt{8}>3.2$		
$3<\sqrt{12}<4$		
$\frac{\sqrt{10}}{2}=\sqrt{5}$		
$5-\sqrt{5}<\frac{\sqrt{5}}{2}$		

Tracy Unified School District - Updated March 11, 2020 - Page 1

Part B: Square \& Cube Roots [8.EE.2]
3. For each, approximate to the nearest tenth, providing a range of values as shown in the example.

Example: $\sqrt{80}$	
$8^{2}=64$	A) $\sqrt{60}$
$8.8^{2}=77.44$	$\sqrt{80} \approx 8.9$
$8.9^{2}=79.21$	$8.8<\sqrt{80}<9$
$9^{2}=81$	
B) $\sqrt{16+15}$	C) $\sqrt{1-8+15}$
D) $2 \sqrt{7}$	E) $\sqrt[3]{21}$

Part C: Pythagorean Theorem [8.G.7]
4. Solve for the missing side of the right triangle, approximating your answer to the nearest tenth. Show your work and justify your reasoning.

